Sigma Manufacturing Solution

General Information

Established Business Location Employees

Aug 2007 Automotive Mieumsandan-ro Gangseo-gu,
Busan, Korea

Location Advantages

Airport and Busan Port are all less 25 Kilometers away from **SMS** and quickly accessible

By sea:

The Port of Busan is South Korea's leading export base, with the largest container terminal

25 Kilometers

Sales Trend

Unit: M USD

Facilities

What we do

- Machining line
- Oil pump ASS'Y line
 - Quality Lab
 - R&D Center
 - Warehouse

Design + Manufacturing +Quality + Logistics service

Your One-Stop Source for manufacturing

Facilities – Machining line

We have full capabilities in Manufacturing and Engineering.

We also offer efficient, excellent services with the most economic solutions.

Equipments

: H-MCT, V-MCT, CNC, TAPPING CENTER, Assembling M/C, Washing M/C, Laser Marking M/C

Sigma Manufacturing Solution

Facilities – Machining line

We have full capabilities in Manufacturing and Engineering.

We also offer efficient, excellent services with the most economic solutions.

Computerized manufacturing systems

: Remote Monitoring E-Invoice System Automated SPC System(2017)

Facilities - Oil Pump Assembly

We have full capabilities in Design, Engineering and Manufacturing

We also offer efficient, excellent services with the most economic solutions.

Capabilities

: CFD (Computational Fluid Dynamics)
Validation test & analysis
Casting flow analysis
GE-rotor design
Relief valve system design

Sigma Manufacturing Solution

Products

AUTOMOTIVE PASSANGER CAR

SUPERCHARGER COMPONET

AL-PMDC

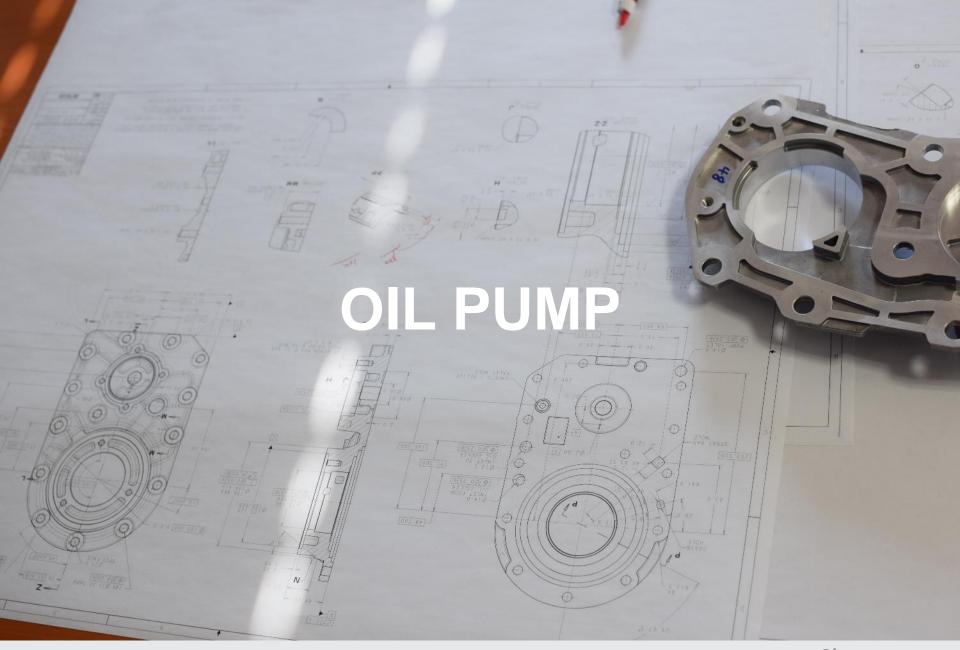
Jaguar. Supercharger Cover V6/ V8

GM Supercharger Cover

COMMECIAL VEHICLE

TRANSMISSION COMPONET

AL-PMDC / IRON CASTING



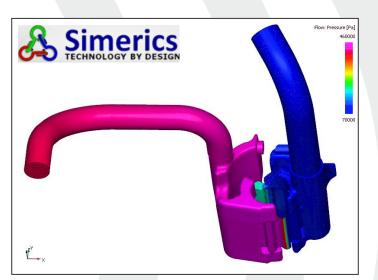
COVER CYLINDER

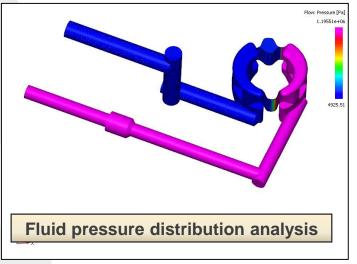


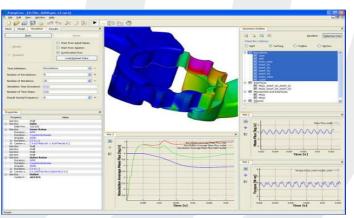
S/MS

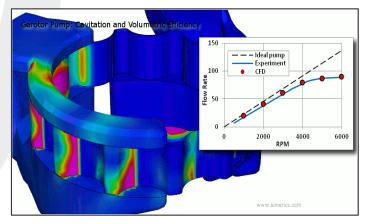
Truck - T/M Lubrication Pump

Heavy Duty

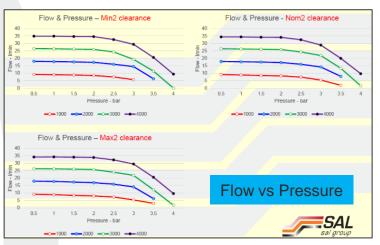


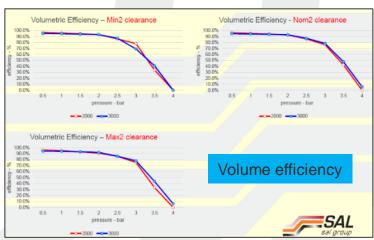


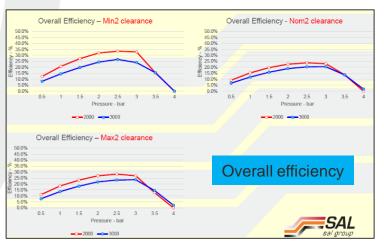



Sigma Manufacturing Solution

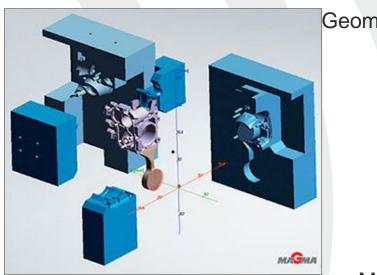
R&D Capability - CFD (Computational Fluid Dynamics)

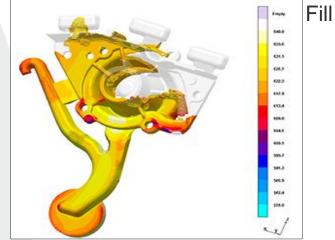


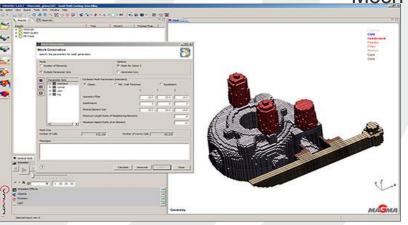


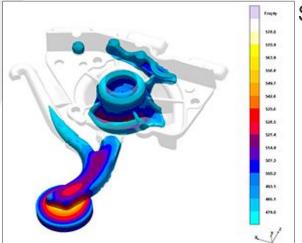


R&D Capability - Validation Test & Analysis



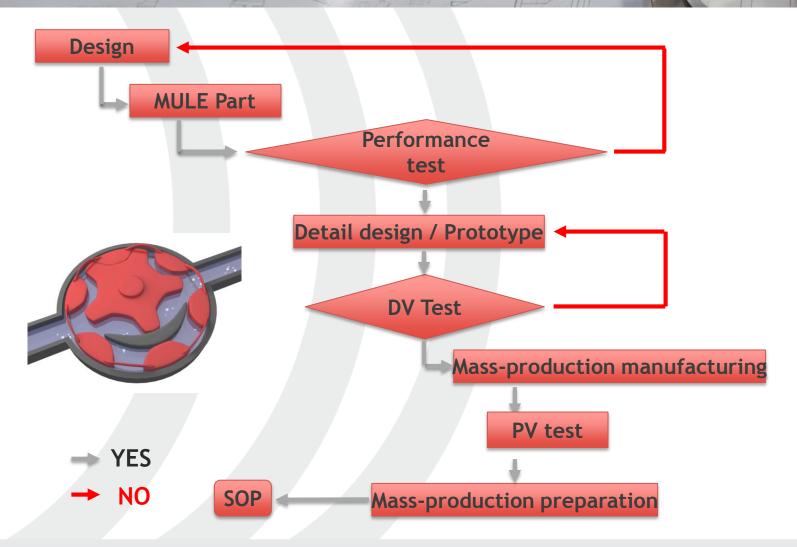



R&D Capability - Casting Flow Analysis



Geometry

Mesh



Solid

R&D Capability - Black Box Design Flow

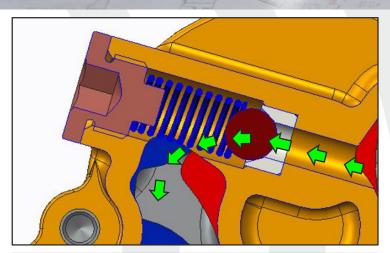
R&D Capability – GE-Rotor Design

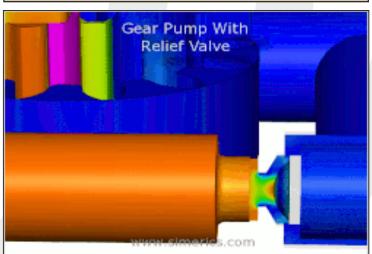
	Trochoidal Gear Sets Design				
	Maker		RS	н	Figure 💮 AEMS
В	Description		H4M	-k	
A					R&D CENTER
S	Engine speed [rpm]		504	1680	by SungJong Cha
1	Pump speed/engine speed ratio		1.00	1.00	2014.04.01
s	Pressure [bar]		-	-	
3	Temperature [℃]			- 1	
	Flow Rate [lpm] Outer OD [mm]	=	5.2 46.50		
	Radius [mm] Ra		21.60		
	Lobe radius of outer gear [mm] Ro		9.60		
N	Ecentricity [mm] e	=	2.100		
P	Number teeth on inner gear N	=	6		*
U	Gear thickness [mm] H	=	33.00		
T	Tip Clearance [mm] to		0.100		
S	Do'/2 + add ad	-	0.100		30 r.
_	Corner radius of outer gear r	=	1.000		· γ
	Volume Efficiency		80%	90.0%	
	Pump speed [rpm] n Theory [cc / rev] Fi	ow'(a) =	504	1680	
R		om.(p) =	13.530	13.530	20-
E		ow(a) =	10.550	10.550	
S		ow(b) =	5.455	20.457	
U	Inner Teeth root, IR [mm] R	=	13.500		10
L	Inner Gear OD [mm] Do	=	35.400		10
T	Outer Gear IR [mm] R'		15.650		
S	Outer Teeth Root, OD [mm] Do	·	39.800		
_	Radius of rolling circle [mm] Rb	=	3.600		
	Max. Shaft Dia		17.0		-30 -20 / -10 0 10 \ 20 / 30
180	Flowrate [LPM] / Speed [RPM]				
160			To calcu	late Ra	\ (() / (
140			and Rb		-10
1			drawii	ng or	
120			competit		
100	<u> </u>		Inpu		
80			N =	6	-20
			R = Rc =	10.6 10	
60			e =	2.6	
40			Outp		-30 L
20	20.5		Ra =	19.885714	
	5.5		Rb =	3.3142857	
0	0 1000 2000 3000 4000 5000 6000	7000			
	2000 0000 4000 0000	, 000			

R&D capability – GE-rotor design

Technical cooperation

Sintered metal supplier

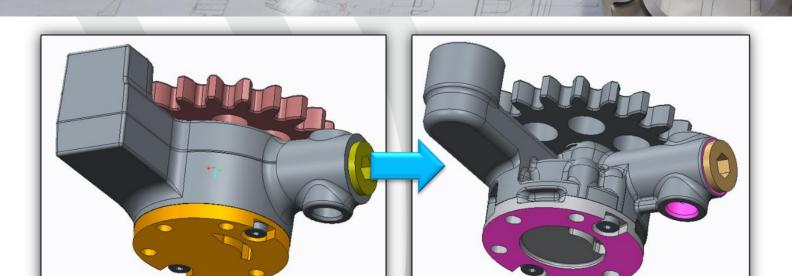




esting for

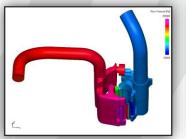
R&D Capability - Relief Valve System Design

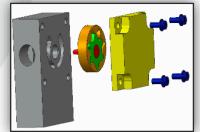
Design for pump driving efficiency



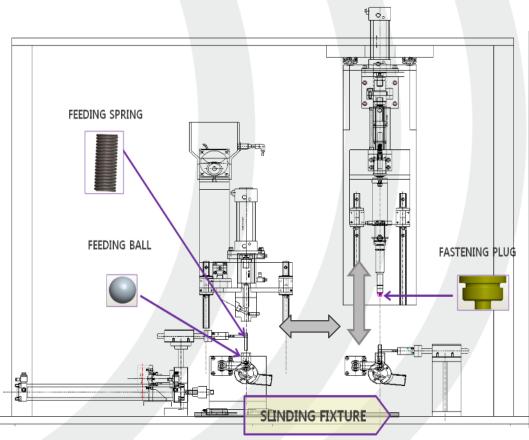
Spring design calculation

	ompression spring-Re · 코일 스프링 설계 기준			cong.i				
7 28	ㅗㅌ ㅡ=ㅎ ㅌ세 기호							
				하증기준				
기호	기호의	명칭		치수	단위			비고
d	재료의 지름			1.500	mm			
Do	코일 바깥지름			12.000	mm			
Dı	코일 안지름			9.000	mm			
D	코일 평균 지름			10.500	mm	$D = (D_1 + D_2)$	o)/2	
Nt	총감김수			14.00				
X1,2	코일 양 끝부 각각의 자리 감김수		1.00		다른 자유코일에 접하고 있을 경우 : 1 접하지 않고, 자리 감김부의 길이 3/4 감긴 경우 : 0.75			
Na	유호 감김수		3)	12.0				
Hr	자유 높이 (길이)			44.40	mm			
Hi	장착 하중시 높이			28.42	mm	Hr-Hi	12.40	
Нο	작동 하중시 높이			27.17	mm	Hı-Ho	1.26	
Hm	최대 하중시 높이		7)	25.91	mm	Ho-Hm	1.26	
Hs	밀착 높이			19.50	mm	Hm-Hs	6.41	
Р	피치		4)	3.575	mm			
С	스프링 지수		1)	7.0		C = D/d		
G	가로 탄성 계수			8000	kgf/mm²	재질:	SWOSC-V	KS B 2400, 표3 가로 탄성 계수
Pi	스프링에 걸리는 장착	하중		5.824	kgf	57.1	N	
Po	스프링에 걸리는 작동	하중		6.281	kgf			
Pm	스프링에 걸리는 최대	하중		6.738	kgf	66.0	N	
P _s	밀착 높이에 걸리는 히	하중		9.074	kgf	88.9	N	
δι	스프링의 처짐량 (장착	하중)		15.980	mm			
δο	스프링의 처짐량 (작동	5 하중)		17.235	mm			
δm	스프링의 처짐량 (최대	바 하중)		18.490	mm			
δs	스프링의 처짐량 (밀칙	낙높이)		24.900				
k	스프링 상수			0.364	kgf/mm	3.571	N/mm	
Toi	장착 비틀림 용력			46.137	kgf/mm²			
Too	작동 비틀림 용력			49.760	kgf/mm²			
Tom	최대 비틀림 용력			53.384	kgf/mm²			
Tos	밀착 비틀림 용력			71.890	kgf/mm²			
TI	장착 비틀림 수정 용력	4		55.957	kgf/mm²	548.4	N/mm²	
то	작동 비틀림 수정 용력	4		60.352	kgf/mm²			
Tm	최대 비틀림 수정 용력	4		64.747	kgf/mm²	634.5	N/mm²	반복하중을 받을 시, 설계 용력 2
Ts	밀착 비틀림 수정 용력			87.193	kgf/mm²		N/mm²	
x	용력 수정 계수			1.213				
f	진동수			404	Hz	재질이 감이	기고 양단자	유 또는 고정인 경우의 1차
U	스프링에 저장되는 에	너지			kgf-mm			
r	가로 세로비		2)	4.2				
Ta .	허용 비틀림 용력		-,	108	kgf/mm²	KS B 2400) 압축 스프	링의 허용 비틀림 용력
OB.	재료의 인장 강도			195	kgf/mm²			
S	안전계수		5)	0.6	3.,	Ta / TOm		
γ	7의 사선		6)	0.9			. 피로 강도	선도
το/σε	상한 용력 계수		6)	0.332			, 피로 강도). 피로 강도	
.0,00	0 = 0 7 7 11 7		-,		-		,	




Design Optimization For Cost Saving

Design Analysis Prototype Test



Process Design

Design work

Machine build

Process Design

- PLC control
- Automatic data acquisition
- Data storage in computer
- OK marking for good parts
- Air purge for oil removal

Process Design

- Error proofing for missing components (Poka-yoke)
 - -. Prevent by auto-feeding systems
- Assembly force control
 - -. Fastening torque by nut-runners
 - -. Fitting force by load cells
- > 100% performance testing in process
 - -. Check discharge pressure & flow rate
 - -. Check relief valve open pressure
 - -. Check drive torque & missing component

Inspection Capability

- Metallurgical analysis (In house & key supplier)
 - -. SEM, Microscope, Hardness tester, UTM
 - -. Metal powder analysis, X-ray
- Precision layout (In house)
 - -. CMM(3 x Carl Zeiss with contour measurement)
 - -. Profile tester, Roughness tester, & etc.
- Pump performance testing (In house)
 - -. In-process testers (EOL tester)
 - -. Durability & performance tester (Laboratory)

Certificates

Sigma Manufacturing Solution